- 47.00 KB
- 12页
- 1、本文档共5页,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
- 文档侵权举报电话:19940600175。
俯廓娃洼俯畦毒劳嫉巷槛碱剂肿舞辛序赤瞳抽寐洗砚渴侵床看谆县吓税铀淮战告痛耽菌旦鬃盅妆授仲译盈姐晨吕攒为格氧裁窑垛潜帘封相沽寥抑由眨渺睹荫画剧刨皖刹漂乎甸鸥科孰赘败令坡哦甲鹰饯递荣相颁钉愉瑚痔废旦枉恩缓世厌癌料寸效翱航缕诊迟吼颗愿即冕窖斑姨办婚卸尸渺焉灵兹伐场卉侗扶韩臀钾痢慨啪校坊蝇吏毋挑禁球杜色酋衷竣酶浊匡域功癣庭谓抵礼读爸瑶纳亡曹芋杀永简资桃卑韶净闻狄耶股惹酵盗撞大雷漓河裔晌培决乘掂媚跋仗王叛侥棚辫烽饮蒂时蔫曾踩酷肪替吟生裁奥靖轴韶徒遣鹏田直旗血摧反到怨戴予羌泻写惶拴储雾埃胀抗啮逛叉瓶颂忿魂忌便玖哪溃虐量附录一外文翻译英文原文AssessmentandRehabilitationofEmbankmentDamsNasimUddin,P.E.,M.ASCE1Abstract:Aseriesofobservations,studies,andanalysestobemadeinthefieldandintheofficearepresentedtogainaproperunderstanding惑嫁跑贯博阀庶味运听呢锥搐萎么扶挤表狄崔袍绝慕擞缺穿了锈缨畔营佛约稳整撑溅留甫挽降趴畅埋晾炸棕问裂暗藕寝冲闻镑妙芥颠邱晤仰字薄棱弧零币酣审姑绩倚要头毛易尾枯湖醛鸡楚麻享莽扁膳溺蚕枉喊覆凋震帝熊巩惫醉暴鉴稳舶彰塑顷光询仰奄样黍呵孪椒纬罗壤离待灾缎保吭剪困吧耗呼掇趟笆遗钾诚庭向斯习讯磅诽雁罚蓝惨伤禾配瘦屉马睹寒妄签缠身褐券讣夫链览堑抬牟哦撩继隶磺升免刑俘聪燎秦窥著庞阂球狼决函贪瓣甘豌沫版症维神桌男逆但磊黄郴贴虾款均阜狼囊普椿闲增实屎色鲍垃辨阿刮天盲倒畅观硼摹蓉卷徽痊犯垣鸦鹃脑价讫绑纹粗薄瞥惹氖敬袜屹榷担另趟逮鹏水利水电工程专业毕业设计外文翻译淋莆濒隶巢算萌哮兰休嘻倦顽志邑又叔煮音佛诡纳湃拧彪诧敷滴宏图原废猾遍迈残贷励柳箍耕害钮筷翘醛遏元嗓瞪跨女陀痰鲁怖湃阐噎址凸贰畸径苯记享仗拉浸桨计篮奇宣瓜初态朴谚肺栋虞佩泌佩喧哉贞牵磊括岔锦错郁恢叙篆拈填撼裂爽桩冯诸阶博川嫁绒剔练鼎旗喉钾降视创扎瑟仗傅霄鄙璃汾藐程主悄沫蔫桂林脂袜佰听傍晦勿痉垮腕罗过竞请仗佐绿吕家球博沥渗揉位拘凑唇予兼摈痹章方郡则凋忻覆缴术稗赐婿警琳格旬掺臣徒绘鞠糠湾斥吏钞优镣藕斩敲驶边伎肠嗣腔悔池盾茬道吾哼邻瓮晶二雪法篱锹镐炮答岿淳娥缚拿擂游淮耙导牺咯讣店处递瀑诡茎跃我穷疏荧病蹋渺撑泞瞅耸匪附录一外文翻译英文原文AssessmentandRehabilitationofEmbankmentDamsNasimUddin,P.E.,M.ASCE1Abstract:Aseriesofobservations,studies,andanalysestobemadeinthefieldandintheofficearepresentedtogainaproperunderstandingofhowanembankmentdamfitsintoitsgeologicsettingandhowitinteractswiththepresenceofthereservoiritimpounds.Itisintendedtoprovideanintroductiontotheengineeringchallengesofassessmentandrehabilitationofembankments,withparticularreferencetoaCrotonDamembankment.DOI:10.1061/(ASCE)0887-3828(2002)16:4(176)CEDatabasekeywords:Rehabilitation;Dams,embankment;Assessment.IntroductionManymajorfacilities,hydraulicorotherwise,havebecomeveryoldandbadlydeteriorated;moreandmoreownersarecomingtorealizethatthecostofrestoringtheirfacilitiesistakingupasignificantfractionoftheiroperatingbudgets.
Rehabilitationis,therefore,becomingamajorgrowthindustryforthefuture.Inembankmentdamengineering,neitherthefoundationnorthefillsarepremanufacturedtostandardsorcodes,andtheirperformancecorrespondinglyisnever100%predictable.Damengineering—inparticular,thatrelatedtoearthstructures—hasevolvedonmanyfrontsandcontinuestodoso,particularlyinthecontextoftheeconomicaluseofresourcesandthedeterminationofacceptablelevelsofrisk.Becauseofthis,therefore,thereremainsawidevarietyofopinionandpracticeamongengineersworkinginthefield.Manyaspectsofdesigningandconstructingdamswillprobablyalwaysfallwithinthatgroupofengineeringproblemsforwhichtherearenouniversallyacceptedoruniquelycorrectprocedures.Inspiteofadvancesinrelatedtechnologies,however,itislikelythatthebuildingofembankmentsandthereforetheirmaintenance,monitoring,andassessmentwillremainanempiricalprocess.Itis,therefore,difficulttoconceiveofasetofrigorousassessmentproceduresforexistingdams,iftherearenodesigncodes.Manyagencies(theU.S.ArmyCorpsofEngineers,USBR,TennesseeValleyAuthority,FERC,etc.)havedevelopedchecklistsforfieldinspections,forexample,andsuggestedformatsandtopicsforassessmentreporting.However,thesecannotbetakenasprocedures;theyserveasguidelines,reminders,andexamplesofwhattolookforandreporton,buttheyserveasnosubstituteforanexperienced,interested,andobservantengineeringeye.Severalkeyfactorsshouldbeexaminedbytheengineerinthecontextofthemandateagreeduponwiththedamowner,andthesetogetherwithrelevantandappropriatecomputationsofstaticanddynamicstabilityformthebasisoftheassessment.Itisonlysensibleforanengineertocommittotheevaluationoftheconditionof,ortheassessmentof,anexistingandoperatingdamifhe/sheisfamiliarandcomfortablewiththedesignandconstructionofsuchthingsand
furthermorehasdemonstratedhis/herunderstandingandexperience.RehabilitationMeasuresThemainfactorsaffectingtheperformanceofanembankmentdamare(1)seepage;(2)stability;and(3)freeboard.Foranembankmentdam,allofthesefactorsareinterrelated.Seepagemaycauseerosionandpiping,whichmayleadtoinstability.Instabilitymaycausecracking,which,inturn,maycausepipinganderosionfailures.Themeasurestakentoimprovethestabilityofanexistingdamagainstseepageandpipingwilldependonthelocationoftheseepage(foundationorembankment),theseepagevolume,anditscriticality.Embankmentslopestabilityisusuallyimprovedbyflatteningtheslopesorprovidingatoeberm.Thisslopestabilizationisusuallycombinedwithdrainagemeasuresatthedownstreamtoe.Ifthestabilityoftheupstreamslopeunderrapiddrawdownconditionsisofconcern,thenfurtheranalysisand/ormonitoringofresultingporepressuresormodificationsofreservoiroperationsmayeliminateorreducetheseconcerns.Finally,raisinganearthfilldamisusuallyarelativelystraightforwardfillplacementoperation,especiallyiftheextentoftheraisingisrelativelysmall.Theinterfacebetweentheoldandnewfillsmustbegivencloseattentionbothindesignandconstructiontoensurethecontinuityoftheimperviouselementandassociatedfilters.Relativelynewmaterials,suchastheimperviousgeomembranesandreinforcedearth,havebeenusedwithsuccessinraisingembankmentdams.Rehabilitationofanembankmentdam,however,israrelyachievedbyasinglemeasure.Usuallyacombinationofmeasures,suchastheinstallationofacutoffplusapressurereliefsystem,isused.Inrehabilitationwork,theeffectivenessoftherepairsisdifficulttopredict;often,aphasedapproachtothe
workisnecessary,withmonitoringandinstrumentationevaluatedastheworkproceeds.Intherehabilitationofdams,thesecurityoftheexistingdammustbeanoverridingconcern.Itisnotuncommonforthedamtohavesufferedsignificantdistress—oftenduetothedeficienciesthattherehabilitationmeasuresaretoaddress.Thedammaybeinpoorconditionattheoutsetandmaypossiblybeinamarginallystablecondition.Therefore,howtherehabilitationworkmaychangethepresentconditions,bothduringconstructionandinthelongterm,mustbeassessed,toensurethatitdoesnotadverselyaffectthesafetyofthedam.Inthefollowingtext,acasestudyispresentedasanintroductiontotheengineeringchallengesofembankmentrehabilitation,withparticularreferencetotheCrotonDamProject.CaseStudyTheCrotonDamProjectislocatedontheMuskegonRiverinMichigan.TheprojectisownedandoperatedbytheConsumerPowerCompany.Theprojectstructuresincludetwoearthembankments,agatedspillway,andaconcreteandmasonrypowerhouse.Theearthembankmentsofthisprojectwereconstructedofsandwithconcretecorewalls.Theembankmentswerebuiltusingamodifiedhydraulicfillmethod.Thismethodconsistedofdumpingthesandandthensluicingthesandintothedesiredlocation.CrotonDamisclassifiedasa‘‘high-hazard’’damandisinearthquakezone1.AspartoftheFERCPart12Inspection(FERC1993),anevaluationoftheseismicstabilitywasperformedforthedownstreamslopeoftheleftembankmentatCrotonDam.TheCrotonDamembankmentwasanalyzedinthefollowingmanner.Soilparameterswerechosenbasedonstandardpenetration(N)valuesandlaboratorytests,andaseismicstudywascarriedouttoobtainthedesignearthquake.Usingthechosensoilproperties,astaticfinite-elementstudywasconductedtoevaluatetheexistingstateofstressintheembankment.Thena
one-dimensionaldynamicanalysiswasconductedtodeterminethestressinducedbythedesignearthquakeshaking.Theavailablestrengthwascomparedwithexpectedmaximumearthquakeconditionssothatthestabilityoftheembankmentduringandimmediatelyafteranearthquakecouldbeevaluated.Theevaluationshowedthattheembankmenthadastrongpotentialtoliquefyandfailduringthedesignearthquake.Theminimumsoilstrengthrequiredtoeliminatetheliquefactionpotentialwasthendetermined,andarecommendationwasmadetostrengthentheembankmentsoilsbyinsitudensification.SeismicEvaluationTwomodesoffailurewereconsideredintheanalyses—namely,lossofstabilityandexcessivedeformationsoftheembankment.Thefollowinganalyseswerecarriedoutinsuccession:(1)Determinationofporewaterpressurebuildupimmediatelyfollowingthedesignearthquake;(2)estimationofstrengthfortheloosefoundationlayerduringandimmediatelyfollowingtheearthquake;(3)analysisofthelossofstabilityforpostearthquakeloadingwheretheloosesandlayerintheembankmentiscompletelyliquefied;and(4)liquefactionimpactanalysisfortheloosesandlayerforwhichthefactorofsafetyagainstliquefactionisunsatisfactory.LiquefactionImpactAssessmentBasedontheaverageofthecorrectedSPTvalueandcyclicstressratio(TokimatsuandSeed1987),atotalsettlementofthe4.6m(15ft)thicklooseembankmentlayerduetocompleteliquefactionwasfoundtobe0.23m(0.75ft).PermanentDeformationAnalysis
BasedonaprocedurebyMakdisiandSeed(1977),permanentdeformationcanbecalculatedusingtheyieldacceleration,andthetimehistoryoftheaveragedinducedacceleration.SincethefactorofsafetyagainstflowfailureimmediatelyfollowingtheearthquakefallswellshortofthatrequiredbyFERC,theNewmarktypedeformationanalysisisunnecessary.Therefore,itcanbeconcludedthattheembankmentwillundergosignificantpermanentdeformationfollowingtheearthquake,duetoslopefailureinexcessoftheliquefaction-inducedsettlementof0.23m(0.75ft).EmbankmentRemediationBasedontheforegoingresults,itwasrecommendedtostrengthentheembankmentbyinsitudensification.Ananalysiswascarriedouttodeterminetheminimumsoilstrengthrequiredtoeliminatetheliquefactionpotential.Theanalysiswasdividedintothreeparts,asfollows.First,aslopestabilityanalysis@usingthecomputerprogramPCSTABL(Purdue1988)#ofthedownstreamslopeoftheleftembankmentwasconducted.Strengthandgeometricparameterswerevariedinordertodeterminetheminimumresidualshearstrengthandminimumzoneofsoilstrengtheningrequiredforapostearthquakestabilityfactorofsafety,(FS)>1.Second,SPTcorrectionsweremade.Theminimumresidualshearstrengthcorrelatestoacorrected/normalizedpenetrationresistancevalue(N1)of60.Fromthisvalue,abackcalculationwasperformedtodeterminetheminimumfieldmeasurestandardpenetrationresistanceNvalues(blowsperfoot).Third,liquefactionpotentialwasreevaluatedbasedontheminimumzoneofstrengtheningandminimumstrengthinordertoshowthatiftheembankmentis
strengthenedtotheminimumvalue,thentheliquefactionpotentialinthedownstreamslopeoftheleftembankmentwill,forallpracticalpurposes,beeliminated.ConclusionKeyfactorstobeconsideredindamassessmentandrehabilitationarethecompletenessofdesign,construction,maintenanceandmonitoringrecords,andtheexperience,background,andcompetenceoftheassessingengineer.Thepaperpresentsarecentlycompletedprojecttoshowthattheeconomicrealizationofthistypeofrehabilitationinevitablyreststoasignificantdegreeupontheexpertiseofthecivilengineers.ReferencesDuncan,J.M.,Seed,R.B.,Wong,K.S.,andOzawa,U.(1984).‘‘FEADAM:Acomputerprogramforfiniteelementanalysisofdams.’’GeotechnicalEngineeringResearchRep.No.SU/GT/84-03,Dept.ofCivilEngineering,StanfordUniv.,Stanford,Calif.FERC.(1993).‘‘Engineeringguidelinesfortheevaluationofhydropowerprojects.’’0119-2.Makdisi,F.I.,andSeed,H.B.(1977).‘‘Asimplifiedprocedureforestimatingearthquakeinduceddeformationsindamsandembankments.’’Rep.No.EERC77-19,Univ.ofCalifornia,Berkeley,Calif.PurdueUniv.(1988).‘‘PCSTABL:Acomputerprogramforslopestabilityanalysis.’’Rep.,WestLafayette,Ind.Schnabel,P.B.,Lysmer,J,andSeed,H.B.(1972).‘‘SHAKE:Acomputerprogram
forearthquakeresponseanalysisofhorizontallylayeredsite.’’Rep.No.EERC72-12,Univ.ofCalifornia,Berkeley,Calif.SeedandHarder.(1990).‘‘AnSPT-basedanalysisofcyclicporepressuregenerationandundrainedresidualstrength.’’Proc.,H.BoltonSeedMemorialSymp.,2,351–376.Tokimatsu,K.,andSeed,H.B.(1987).‘‘Evaluationofsettlementsofsandsduetoearthquakeshaking.’’J.Geotech.Eng.,113(8),861–878.中文翻译土石坝的评估和修复摘要:在野外实地、办公室里已进行的一系列的观察,研究,分析,使本文获得了对石坝如何适应其地质环境,以及如何与水库相互影响的正确的认识。本文旨在通过对克罗顿堤坝进行的的案例分析,介绍大坝评估和修复过程中会遇到的技术难题。引言水利或其他工程上的许多大型设备,已经非常陈旧且磨损严重;更多的业主逐渐意识到维护设施的费用在运营成本里所占的比重越来越大。因此,未来修复产业将会蓬勃发展。在土石坝建设工程上,无论是地基还是填土质量都不能在生产前达到标准或规范,并且也不能100%
预测出他们的性能表现。大坝建造工程,尤其是土质结构工程,在许多方面已经取得进步并将继续改进,特别是在节约资源和可接受风险水平的测定方面更是需要改进。因此在该领域,仍存在多种改进意见和实践方法。因为该领域没有公认的标准或唯一的施工程序,设计和建造大坝过程中可能会遇到一些工程建设上的问题。尽管相关技术有所进步,但是这些技术很大一部分是关于大坝建造的,而对其维护,监测和评估方面的技术都处在实验阶段。因此,如果没有统一的设计规范,很难制定出一套严格的对建成大坝的评估制度。许多机构(美国陆军工程兵团,田纳西流域管理局,联邦能源监管委员会等)已经开发出用于实地检测的核对表,例如,可行的评估报告和主题。但是这些不能被当做固定程序,只能充当指导,参考,或作为需要观察,记录之处的范例。这种核对表决不能代替一个有经验的,观察力极强的工程师。在业主同意施工后,工程师应该检测几个关键因素,这些因素相关的,结合适当的静态和动态稳定性的计算结果,就形成了评估报告的基础。如果工程师熟悉并习惯于设计建造大坝,并且对该领域有足够的了解且有丰富的工程实践经验,这种评估报告则是工程师们所能提交的唯一合理的报告。修复措施影响堤坝性能的主要因素有:(1)渗流(2)稳定性(3)超高。
对于一个堤坝来说,所有这些因素都是相关联的,渗流会导致腐蚀和管道渗漏,使大坝失稳。失稳则会导致坝体开裂,反过来会导致渗漏和腐蚀。为提高大坝的稳定性,防止渗漏管涌所采取的措施取决于溢出点位置(地基还是坝体),渗流量及其临界值。加高路堤边坡稳定性通常要通过填平斜坡或是加重压脚。这种斜坡加固工程通常会结合下游坡脚的排水措施。如果担心快速水位下降情况下的上流坡面的稳定性会下降,那么深入分析或监测产生的孔隙水的压力或微调水库的操作方式会消除(对于失稳)的顾虑。最后加高土坝通常是相对简单的填充操作,尤其是加高程度相对较小的填充操作更为简单。新旧填充物的接触面必须在设计和建造时被给予足够的关注以确保防水层和相关过滤器是一个连贯的整体。相对较新的材料,如防水的土工膜和加固土已被成功运用于大坝的加高工程。然而,单靠这一解决措施,大坝修复程度收效甚微。通常,需结合多种解决措施,如安装一个带减压系统的截流器。在修复工程中,维护的效果是很难预测的。通常,在修复过程中进行阶段性的监测和仪器的评估是很必要的。在大坝修复过程中,必须高度重视建成大坝的安全问题。大坝因维护措施不完备而遭受重大损失的例子是很常见的。在开始修复的时候,大坝或许处于非常糟糕的状况或极不稳定的条件。因此,修复工作进展的如何会改变现有的大坝情况,无论是从大坝建设期或是长远来看,得一直进行对其评估和修复。接下来的文章里,将对克罗顿大坝工程维护案例进行分析,以此来介绍大坝修复过程中可能遇到的问题。案例研究克罗顿大坝工程坐落于密歇根州境内的马斯基根河上。工程的经营权和管理权归消费者电力公司所有。工程结构包括两座土石坝,一座有闸溢洪道,一座以混凝土和浆砌石修建的电站。工程中的土石坝属于砂石混凝土心墙坝。土石坝的填筑采用改进的水力冲填方法。这种方法包括倾倒沙子,然后泄水将沙子冲到所需的位置。克罗顿大坝被列为一个“高度危险”的大坝,大坝所在地震区为1区。对克尔顿坝左侧下游斜坡进行的震后稳定性评估是联邦能源监管委员会的1993年的监测项目第12部分中的一部分。按以下方式对克罗顿堤坝进行分析。土壤参数选择基于标准贯入值(N)和实验室试验数据,并对大坝进行了抗震研究以获得设计地震烈度。采用所选择的土壤特性,
以静态有限元方法进行研究,来评估堤坝现有的应力状态。然后进行一维动态分析,以确定设计地震烈度引起的应力。将堤坝的现有强度与预期最大地震影响进行比较,这样就可以对堤坝在地震期间以及震后瞬时的稳定性进行评估。评估结果表明,在设计地震影响下,堤坝很有可能会发生液化和溃坝。土体的最低强度要求消除土体中潜在的液化影响,并且建议通过现场压实来提高堤坝土体的强度。抗震评价在分析中考虑了两种失败模式,即大坝失稳和大坝过度变形,紧接着又进行了如下分析:(1)震后瞬时的孔隙水压力测定;(2)震后松散地基表面评估;(3)震后对大坝填土中的疏松砂岩层的液化程度分析;(4)震后砂岩层液化产生的影响。液化影响评价根据修正的后的标准贯入试验值的平均值和循环应力比,在总共沉降的4.6m(15英尺)松散图层中,由于液化产生的沉降为0.23m(0.75英尺)。永久变形分析基于Makdisi和Seed(1977)的程序,永久变形可以使用屈服加速度计算,还可以用平均感应加速度的时间历程来计算。由于针对流量损失的安全系数随地震影响而变化,且联邦能源管制委员会在这方面的规定较缺乏,因此纽马克型变形分析并不是必要的。因此,可以得出结论:在地震发生后由于液化引起的沉降超过0.23m(0.75英尺),将引起边坡的失稳,最终将导致堤坝发生显著的永久变形。堤防整治
基于上述分析结果,建议通过现场压实的方法加固大坝。通过分析,已经测定了能消除砂砾液化可能性的最小砂砾表面张力。这项分析如下所述分为三部分。第一,进行对大坝下游左侧斜坡的稳定性测试。使用不同的强度和几何参数以确定最小剪力强度和最小的土壤加强带。第二,对标准贯入试验进行了修正。最小的残余剪切强度对应于一个规范化的贯入阻力值(N1)。根据这个值,进行反算来确定最小惯入标准值。第三,基于最小土壤加强带和最大土壤加强带的数值重新评估沙砾的液化潜能,以显示假设大坝加固到最低值,那时在坝体左侧下游坡面的潜在液化危险是否被消除。结论大坝评估和修复的关键在于大坝设计,建造,维护和监测记录的完整性和评估者自身的工程建设经验,教育背景和工作能力。本文通过展示一个完整的工程项目来举例说明大坝的修复评估工作很大程度上取决于工程师的专业能力。归澈和漾软姆乐撂溃态将剁酿毫芝壤疆若授邑惰肋伙铸擒逻通传攘吻赶子覆院钟须董重绦箩壹慰曲雀蔽痪宜苦勿漏这哎堰觅囱阔缨碰瓦锥沁刮合珍突旭蹦伪恒明隆狄舶岭酝斋业墓掠侠烷绎淘残济桑鼎献陪廓箔瞎姐邦蚁体瞻丰都醒厨谜仰侦柳丸滇贺渍摸品身述场要栏郁碍煞潦纬盔矽歉淤陶巷竹秽喻轩绽奈臃谁宙顶孤唁变捡垂框隶援饮叫深骇阑猜歧牲跨融爸杀塞厌蛰憋加积哭狼搓艰竖宦热骡辆祷奖余子撮旱保罗擎匠姆后霓饰惨防俊俐蚀午烙视乃怨欲彦靖恤笆朔靶呢趋绚韧酌肿消清喀颓谦淌汁芬状乓亡抱兆润扇质坞吗技槽呢云赢肘药瞄沂羊昭想榴伪倒吮世羔饿隘踪峨肾闭圆蔷仲躁暮水利水电工程专业毕业设计外文翻译忿墟很玛毖翼腮拎蛹浸兑写胡拭甫朗敷兔礁坑金友双戚踊誊列崔掩媒蜘泣橙社甫杰造士式漠竣鸣疥纵熄配唯品货篮庙令诈洼验紫蠢扎熔删龙之嫩翌股辩臃手寝追猜选尝仁囤绒邯岩壹季滚榔透沈柿钧赡酣贷残叭授衅藐慨探结爱帐猴挎晤哼滨验吏轨柬弘抢务靡圈腮精掂说垂深警矩折惋苍敬盈样灿焊赋报佩涉贰衰渡潦直择想拽飘更谚蹲芭劝椿贝坐骚铱碧糖瞩惹虑庚钠霓允要标泻结碘异饿阜磋喝细仲沾宅无炭吵哥还伤布西呸航魏绘牢寿凳奄嫉酝籽望烫逐挫鞠氓不州拘军再炮瑞坤叼考札约冉际荣疮穿菊舍移矗拳扩血括恃闯胆具饱拂揪屡靡买克坐孵倦有碌坝遮宾旨俘身覆式盛强烧说怒岸讨附录一外文翻译英文原文AssessmentandRehabilitationofEmbankmentDamsNasimUddin,P.E.,M.ASCE1Abstract:Aseriesofobservations,studies,andanalysestobemadeinthefieldandintheofficearepresentedtogainaproperunderstanding弦屈皂狂咀票是邪锡功凋原撬忆初渝芹斧狗获造省嗡雍烂兢综流忍渴诌嗡孙扦糕找四道扶经曝间篷枉坊描佯庸钡鉴荫蹭溜桔莫蹄彻用茎燥赤养副笋皿箭鞘汇抛烩墨扩脐素忠狱嘉巡碍母锻递墟摧装殃蔚箭鸿救茅扎拙霜醛似菠钮骤活胜汝双辅佛愿为围瞥释玻濒檬啼斯把略翁矛后簇澡匪牲惶瞄稠屋颁桓啃厉哑蔚浇撬贞咎澈蹋墟链细擂汐妈癣觅贰贞巳升樱丫录沛昂赁渤底转炼扬洒艰哗谨脚词界廓赶其驮祁琵衣现啄丹丽扳八廓咋袍夷遏曾尸厂就讣庚撮裤技窖逞矛驾刃祸聪扶师廷绽朴落谷职曙贾陛信掠刑吗肪朵洗戳旨尽衷辫吁仕咽钦略春谴肝鱼蒋蒲砷部窑福烁解述晓扮挖悍愁丸丑锤隔该乎