• 437.92 KB
  • 9页

解析生物遗传定律 教师

  • 9页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档共5页,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,可选择认领,认领后既往收益都归您。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细先通过免费阅读内容等途径辨别内容交易风险。如存在严重挂羊头卖狗肉之情形,可联系本站下载客服投诉处理。
  4. 文档侵权举报电话:19940600175。
2012年高考试题分项解析生物专题07分离规律和自由组合规律1(2012江苏)下列关于遗传实验和遗传规律的叙述,正确的是A.非等位基因之间自由组合,不存在相互作用B.杂合子与纯合子基因组成不同,性状表现也不同C.孟德尔巧妙设计的测交方法只能用于检测F1的基因型D.F2的3:1性状分离比一定依赖于雌雄配子的随机结合答案:D非等位基因之间存在互作关系;显性条件下,AA和Aa表现型相同;测交还可以检测未知基因型的显性性状个体的基因组成。2、(2012山东)遗传病的遗传涉及非同源染色体上的两对等位基因。已知Ⅰ-1基因型为AaBB,且Ⅱ-2与Ⅱ-3婚配的子代不会患病。根据以下系谱图,正确的推断是A.Ⅰ-3的基因型一定为AABbB.Ⅱ-2的基因型一定为aaBBC.Ⅲ-1的基因型可能为AaBb或AABbD.Ⅲ-2与基因型为AaBb的女性婚配,子代患病的概率为3/16答案:B“Ⅰ-1基因型为AaBB”而个体不会患病,由此可推知基因型为AB的个体表现正常,可推知Ⅱ-2基因型必为aaB。由于第三代不会患病,则第三代个体的基因型一定为AaBb,可知Ⅱ-3的基因型一定为AAbb。3.(2012海南卷)玉米糯性与非糯性、甜粒与非甜粒为两对相对性状。一般情况下用纯合非糯非甜粒与糯性甜粒两种亲本进行杂交时,F1表现为非糯非甜粒,F2有4种表现型,其数量比为9:3:3:1。若重复该杂交实验时,偶然发现一个杂交组合,其F1仍表现为非糯非甜粒,但某一F1植株自交,产生的F2只有非糯非甜粒和糯性甜粒2种表现型。对这一杂交结果的解释,理论上最合理的是[来源:21世纪教育网]A.发生了染色体易位B.染色体组数目整倍增加21世纪教育网C.基因中碱基对发生了替换[21世纪教育网]D.基因中碱基对发生了增减答案:A如果两对非等位基因位于一对同源染色体上就不会表现出自由组合。从题目可知,发生突变的植株不能进行基因的自由组合,原因最可能是发生染色体异位,使原来位于非同源染色体上的基因位于一对同源染色体上了。4.(2012海南卷)已知小麦无芒(A)与有芒(a)为一对相对性状,用适宜的诱变方式处理花药可导致基因突变。为了确定基因A是否突变为基因a,有人设计了以下4个杂交组合,杂交前对每个组合中父本的花药进行诱变处理,然后与未经处理的母本进行杂交。若要通过对杂交子一代表现型的分析来确定该基因是否发生突变,则最佳的杂交组合是A.♂无芒×♀有芒(♂AA×♀aa)B.♂无芒×♀有芒(♂Aa×♀aa)21世纪教育网C.♂无芒×♀无芒(♂Aa×♀Aa)D.♂无芒×♀无芒(♂AA×♀Aa)答案:A 如果A基因发生突变为a基因,这时无芒的纯合子父本产生含a的配子,当遇到a的雌配子时,将来发育的植株就表现出隐性性状。5(2012安徽)假设某植物种群非常大,可以随机交配,没有迁入和选出,基因不产生突变。抗病基因R对感病基因r为完全显性。现种群中感病植株rr占1/9,抗病植株RR和Rr各占4/9,抗病植株可以正常开花和结实,而感病植株在开花前全部死亡。则子一代中感病植株占A.1/9B.1/16C.4/81D.1/8答案:B感病植株在开花前全部死亡,可知亲代参与交配的全为抗病植株,RR和Rr各占一半,由此计算出R的基因频率为3/4,r的基因频率为1/4,直接应用遗传平衡定律计算得出子一代中感病植株(rr)占1/166.(2012上海卷)在一个成员血型各不相同的家庭中,妻子是A型血,她的红细胞能被丈夫和儿子的血清凝集,则丈夫的血型和基因型分别是A.B型,IBIB。B.B型,IBiC.AB型,iAIBD.O型,答案:B妻子是A型血,基因型可能为IAIA或IAi,其红细胞表面含A抗原,由于其红细胞能被丈夫和儿子的血清凝集,故丈夫和儿子的血清中含抗A抗体,红细胞表面不含A抗原,即丈夫和儿子都不能是A型、AB型血,可能是B型或O型,若丈夫为O型(基因型ii),而儿子的血型(O型或A型)必然与丈夫或妻子的血型相同,若丈夫为B型(基因型IBIB),则儿子可能为AB型、B型血,与前面分析矛盾,若丈夫为B型(基因型IBi),则儿子只能为O型(基因型ii),可以满足题干要求。7.(2012上海卷)小麦粒色受不连锁的三对基因A/a、B/b、C/c-控制。A、B和C决定红色,每个基因对粒色增加效应相同且具叠加性,a、b和c决定白色。将粒色最浅和最深的植株杂交得到F1。Fl的自交后代中,与基因型为Aabbcc的个体表现型相同的概率来A.1/64B.6/64C.15/64D.20/64答案:B粒色最深的植株基因型为AABBCC(6显),颜色最浅的植株基因型为aabbcc(0显),AABBCC与aabbcc杂交得到FlAaBbCc,Fl自交后代中与Aabbcc(1显)表现相同的有Aabbcc、aaBbcc、aabbCc,合计6/648.(2012上海卷)某植物的花色受不连锁的两对基因A/a、B/b控制,这两对基因与花色的关系如图ll所示,此外,a基因对于B基因的表达有抑制作用。现将基因型为AABB的个体与基因型为aabb的个体杂交得到Fl,则F1的自交后代中花色的表现型及比例是A.白:粉:红,3:10:3B.白:粉:红,3:12:1C.白:粉:红,4:3:9D.白:粉:红,6:9:1答案:C9(2012重庆)(16分)青蒿素是治疗疟疾的重要药物。利用雌雄同株的野生型青蒿(二倍体,体细胞染色体数为18),通过传统育种和现代生物技术可培育高青蒿素含量的植株。请回答以下相关问题:(1)假设野生型青蒿白青秆(A)对紫红秆(a)为显性,稀裂叶(B)对分裂叶(b)为显性,两对性状独立遗传,则野生型青蒿最多有      种基因型;若Fl代中白青秆、稀裂叶植株所占比例为3/8,则其杂交亲本的基因型组合为    ,该Fl代中紫红秆、分裂叶植株占比例为      。 (2)四倍体青蒿中青蒿素含量通常高于野生型青蒿,低温处理野生型青蒿正在有丝分裂的细胞会导致染色体不分离,从而获得四倍体细胞并发育成植株。推测低温处理导致细胞染色体不分离的原因是       ,四倍体青蒿与野生型青蒿杂交后代体细胞的染色体数为   。(3)从青蒿中分离了cyp基因(题31图为基因结构示意图),其编码的CYP酶参与青蒿素合成。①若该基因一条单链中(G+T)/(A+C)=2/3,则其互补链中(G+T)/(A+C)=。②若该基因经改造能在大肠杆菌中表达CYP酶,则改造后的cyp基因编码区无(填字母)。③若cyp基因的一个碱基对被替换,使CYP酶的第50位氨基酸由谷氨酸变成缬氨酸,则该基因突变发生的区段是(填字母)。[来源:21世纪教育网]【解析】(1)在野生型青蒿的秆色和叶型这两对性状中,控制各自性状的基因型各有3种(AA、Aa和aa,及BB、Bb和bb),由于控制这两对性状的基因是独立遗传的,基因间可自由组合,故基因型共有3×3=9种。Fl代中白青秆、稀裂叶植株所占比例为3/8,表明两对基因一对为杂交,一对为测交。(3)①若该基因一条链上四种含氮碱基的比例为=,根据碱基互补配对原则,其互补链中==。②与原核生物的基因结构相比,真核生物基因的编码区是不连续的,由能够编码蛋白质的序列——外显子(图示J、L、N区段)和不编码编码蛋白质的序列——内含子(图示K、M区段)间隔而构成,而原核生物的基因编码区中不存在内含子区段。为了使该基因能在大肠杆菌(原核生物)中表达,应当将内含子区段去掉。③cyp基因中只有编码区的外显子区段能编码蛋白质,该基因控制合成的CYP酶的第50位由外显子的第150、151、152对脱氧核苷酸(3×50=150,基因中的每3对连续脱氧核苷酸决定一个氨基酸)决定,因此该基因突变发生在L区段内(81+78=159)。【答案】(1)9AaBb×aaBb、AaBb×Aabb(2)低温抑制纺锤体形成27(3)①②K和M③L10.(2012全国新课程)(10分)一对毛色正常鼠交配,产下多只鼠,其中一只雄鼠的毛色异常。分析认为,鼠毛色出现异常的原因有两种:一是基因突变的直接结果(控制毛色的基因显隐性未知,突变只涉及一个亲本常染色体上一对等位基因中的一个基因);二是隐性基因携带者之间交配的结果(只涉及亲本常染色体上一对等位基因)。假定这只雄鼠能正常生长发育,并具有生殖能力,后代可成活。为探究该鼠毛色异常的原因,用上述毛色异常的雄鼠分别与其同一窝的多只雌鼠交配,得到多窝子代。请预测结果并作出分析。21世纪教育网(1)如果每窝子代中毛色异常鼠与毛色正常的鼠比例均为,则可推测毛色异常是性基因突变为性基因的直接结果,因为。 (2)如果不同窝子代出现两种情况,一种是同一窝子代中毛色异常鼠与毛色正常鼠比例是,另一种是同一窝子代全部表现为鼠,则可推测毛色异常是隐性基因携带者之间交配的结果。解析:假设该性状由一对等位基因Aa控制,若为基因突变,又只涉及一个亲本常染色体上一对等位基因中的一个基因,要想表现毛色异常,该突变只能为显性突变,即由隐性记忆突变为显性基因,突变体为Aa,正常雌鼠为aa,所以后代毛色异常鼠与毛色正常的鼠比例均为1:1,若为亲本中隐形基因的携带者,此毛色异常的雄鼠的(基因型为aa)与同一窝的多只雌鼠(基因型为AA或Aa)交配后,不同窝的子代不同,若雌鼠为AA,后代全部为毛色正常鼠,若雌鼠为Aa,后代毛色异常鼠与毛色正常鼠比例是1:1。答案(1)1:1隐显只有两个隐性纯合亲本中一个亲本的一个隐性基因突变为显性基因时,才能得到每窝毛色异常鼠与毛色正常鼠的比例均为1:1的结果(2)1:1毛色正常11.(2012大纲版全国卷)(12分)果蝇的灰身(B)与黑身(b)、大翅脉(E)与小翅脉(e)是两对相对性状且独立遗传。灰身大翅脉的雌蝇和灰身小翅脉的雄蝇杂交,子代中47只为灰身大翅脉,49只为灰身小翅脉,17只为黑身大翅脉,15只为黑身小翅脉。回答下列问题:(1)在上述杂交子代中,体色和翅脉的表现型比例依次为和。(2)两各亲本中,雌蝇的基因型为,雄蝇的基因型为。(3)亲本雌蝇产生卵的基因组成种类数为,其理论比例为。(4)上述子代中表现型为灰身大翅脉个体的基因型为,黑身大翅脉个体的基因型为。答案:(1)灰身:黑身=3:1大翅脉:小翅脉=1:1(2)BbEeBbee(3)4种1:1:1:1(4)BBEe或BbEebbEe12、(11年新课标卷)(8分)某植物红花和白花这对相对性状同时受多对等位基因控制(如A、a;B、b;Cc……),当个体的基因型中每对等位基因都至少含有一个显性基因时(即A_B_C_......)才开红花,否则开白花。现有甲、乙、丙、丁4个纯合白花品系,相互之间进行杂交,杂交组合组合、后代表现型及其比例如下:根据杂交结果回答问题:⑴这种植物花色的遗传符合哪些遗传定律?⑵本实验中,植物的花色受几对等位基因的控制,为什么?解析:⑴基因的自由组合定律和基因的分离定律(或基因的自由组合定律)⑵4对。本实验的乙×丙和甲×丁两个杂交组合中,F2中红色个体占全部个体的比例81/(81+175)=81/256=(3/4)4,根据n对等位基因自由组合且完全显性时,F2中显性个体的比例为(3/4)n,可判断这两个杂交组合中都涉及到4对等位基因。综合杂交组合的实验结果,可进一步判断乙×丙和甲×丁两个杂交组合中所波及的4对等位基因相同。13、 (11年大纲版全国卷)(10分)人类中非秃顶和秃顶受常染色体上的等位基因(B、b)控制,其中男性只有基因型为BB时才表现为非秃顶,而女性只有基因型为bb时才表现为秃顶。控制褐色眼(D)和蓝色眼(d)的基因也位于常染色体上,其表现型不受性别影响。这两对等位基因独立遗传。 回答问题:(1)非秃顶男性与非秃顶女性结婚,子代所有可能的表现型为____________________。(2)非秃顶男性与秃顶女性结婚,子代所有可能的表现型为_____________________。(3)一位其父亲为秃顶蓝色眼而本人为秃顶褐色眼的男性与一位非秃顶蓝色眼的女性结婚。这位男性的基因型为_________或___________,这位女性的基因型为_______或___________。若两人生育一个女儿,其所有可能的表现型为_______________________________________。解析:(1)非秃顶男性基因型为BB,非秃顶女性结婚基因型为BB或Bb,二人的后代基因型为BB、Bb。BB表现型为非秃顶男、非秃顶女性。Bb表现型为秃顶男、非秃顶女性。(2)非秃顶男性(BB)与秃顶女性结婚(bb),后代基因型为Bb,表现型为秃顶男、非秃顶女性。(3)其父亲基因型为Bbdd或bbdd;这位男性的基因型为BbDd或bbDd。这位女性的基因型为Bbdd或BBdd。若两人所生后代基因型有BBDd、BBdd、Bbdd、BbDd、bbDd、bbdd。女儿所有可能的表现型为非秃顶褐色眼、秃顶褐色眼、非秃顶蓝色眼、秃顶蓝色眼。答案:(1)女儿全部非秃、儿子为秃顶或非秃顶(2)女儿全部为非秃、儿子全部为秃顶(3)BbDdbbDdBbddBBdd非秃顶褐色眼、秃顶褐色眼、非秃顶蓝色眼、秃顶蓝色眼14、(11年北京卷)(16分)果蝇的2号染色体上存在朱砂眼(a)和褐色眼(b)基因,减数分裂时不发生交叉互换。aa个体的褐色素合成受到抑制,bb个体的朱砂色素合成受到抑制。正需果蝇复眼的暗红色是这两种色素叠加的结果。(1)和是性基因,就这两对基因而言,朱砂眼果蝇的基因型包括。(2)用双杂合体雄蝇(K)与双隐性纯合体雌蝇进行测试交实验,母体果蝇复眼为色。子代表现型及比例为按红眼:白眼=1:1,说明父本的A、B基因与染色体的对应关系是(3)在近千次的重复实验中,有6次实验的子代全部为暗红眼,但反交却无此现象,从减数分裂的过程分析,出现上述例外的原因可能是:的一部分细胞未能正常完成分裂,无法产生(4)为检验上述推测,可用观察切片,统计的比例,并比较之间该比值的差异。答案:(1)隐aaBbaaBB(2)白A、B在同一条2号染色体上(3)父本次级精母携带a、b基因的精子(4)显微镜次级精母细胞与精细胞K与只产生一种眼色后代的雌蝇15、(2011年福建卷)二倍体结球甘蓝的紫色叶对绿色叶为显性,控制该相对性状的两对等位基因(A、a和B、b)分别位于3号和8号染色体上。下表是纯合甘蓝杂交试验的统计数据:请回答:(1)结球甘蓝叶性状的有遗传遵循____定律。 (1)表中组合①的两个亲本基因型为____,理论上组合①的F2紫色叶植株中,纯合子所占的比例为_____。(2)表中组合②的亲本中,紫色叶植株的基因型为____。若组合②的F1与绿色叶甘蓝杂交,理论上后代的表现型及比例为____。(3)请用竖线(|)表示相关染色体,用点(·)表示相关基因位置,在右图圆圈中画出组合①的F1体细胞的基因示意图。答案:(1)自由组合(2)AABBaabb1/5(3)AAbb(或aaBB)紫色叶:绿色叶=1:116、(11年四川卷)(21分)回答下列Ⅰ、Ⅱ两小题。II.(14分)小麦的染色体数为42条。下图表示小麦的三个纯种品系的部分染色体及基因组成:I、II表示染色体,A为矮杆基因,B为抗矮黄病基因,E为抗条斑病基因,均为显性。乙品系和丙品系由普通小麦与近缘种偃麦草杂交后,经多代选育而来(图中黑色部分是来自偃麦草的染色体片段)(1)乙、丙系在培育过程中发生了染色体的变异。该现象如在自然条件下发生,可为提供原材料。(2)甲和乙杂交所得到的F自交,所有染色体正常联会,则基因A与a可随的分开而分离。F自交所得F中有种基因型,其中仅表现抗矮黄病的基因型有种。(3)甲和丙杂交所得到的F自交,减数分裂中Ⅰ甲与Ⅰ丙因差异较大不能正常配对,而其它染色体正常配对,可观察到个四分体;该减数分裂正常完成,可生产种基因型的配子,配子中最多含有条染色体。(4)让(2)中F与(3)中F杂交,若各种配子的形成机会和可育性相等,产生的种子均发育正常,则后代植株同时表现三种性状的几率为。答案:(1)结构生物进化(2)同源染色体92(3)20422(4)3/16解析:(1)观察图可知乙丙品系发生了染色休结构变异,变异能为生物进化提供原材料。(2)基因A、a是位于同源染色体上的等位基因,因此随同源染色体的分开而分离。甲植株无Bb基因,基因型可表示为:AA00,乙植株基因型为aaBB,杂交所得F1基因型为AaB0,可看作AaBb思考,因此所F2基因型有9种,仅表现抗矮黄病的基因型有2种:aaBBaaB。(3)小麦含有42条染色体,除去不能配对的两条,还有40条能两两配对,因此可观察到20个四分体。由于I甲与I丙不能配对,因此在减数第一次分裂时,I甲与I丙 可能分开,可能不分开,最后的配子中:可能含I甲、可能含I丙、可能都含、可能都不含,因此能产生四种基因型的配子。最多含有22条染色体。(4)(2)中F1的基因型:AaB,(3)中F1基因型可看成:AaE,考虑B基因后代出现抗矮黄病性状的几率为1/2,考虑A和E,后代出现矮杆、抗条斑病性状的概率为3/8,因此同时出现三种性状的概率为3/16。17、(11年重庆卷)(16分)拟南芥是遗传学研究的模式植物,某突变体可用于验证相关的基因的功能。野生型拟南芥的种皮为深褐色(TT),某突变体的种皮为黄色(tt),下图是利用该突变体验证油菜种皮颜色基因(Tn)功能的流程示意图。(1)与拟南芥t基因的mRNA相比,若油菜Tn基因的mRNA中UGA变为AGA,其末端序列成为“-AGCGCGACCAGAACUCUAA”,则Tn比t多编码     个氨基酸(起始密码子位置相同,UGA、UAA为终止密码子)。(2)图中①应为     。若②不能在含抗生素Kan的培养基上生长,则原因是.若③的种皮颜色为,则说明油菜基因与拟南芥T基因的功能相同。(3)假设该油菜基因连接到拟南芥染色体并替换其中一个t基因,则③中进行减数分裂的细胞在联会时的基因为;同时,③的叶片卷曲(叶片正常对叶片卷曲为显性,且与种皮性状独立遗传),用它与种皮深褐色、叶片正常的双杂合体拟南芥杂交,其后代中所占比列最小的个体表现为;取③的茎尖培养成16颗植珠,其性状通常(填不变或改变)。(4)所得的转基因拟南芥与野生型拟南芥(填是或者不是)同一个物种。答案:(1)2(2)重组质粒(重组DNA分子)重组质粒未导入深褐色(3)TnTntt;黄色正常、黄色卷曲;不变(4)是解析:油菜Tn基因的mRNA中UGA变为AGA,而末端序列为“——AGCGCGACCAGACUCUAA——”,在拟南芥中的UGA本是终止密码子不编码氨基酸,而在油菜中变为AGA可编码一个氨基酸,而CUC还可编码一个氨基酸,直到UAA终止密码子不编码氨基酸。假设油菜Tn基因连接到拟南芥染色体并替换其是一个t基因,注意拟南芥是指实验有的突变体tt,所以③转基因拟南芥基因型为Tnt,减数分裂联会时形成四分体是由于染色体进行了复制,基因也进行了复制,因而基因型为TnTntt。设③转基因拟南芥的叶片卷曲与正常叶是由B、b基因控制,正常叶为显性,而该对性状与种皮性状为独立遗传,则这两对性状遵循基因的分离与自由组合定律。则:③转基因拟南芥╳双杂合拟南芥TntbbTtBb进行逐对分析:Tnt╳Tt1/4TnT、1/4Tnt、1/4Tt、1/4tt 由于Tn和T的功能相同,所以表示为3/4T--(深褐色)、1/4tt(黄色)bb╳Bb1/2Bb(正常叶)、1/2bb(卷曲叶)所以后代中有四种表现型;3/8种皮深褐色正常叶;3/8种皮深褐色卷曲叶1/8种皮黄色正常叶;1/8种皮黄色卷曲叶取③转基因拟南芥的茎尖培养为植物组织培养为无性生殖,所以后代性一般不变。(排除基因突变)由上可知所得③转基因拟南芥Tnt和野生型拟南芥TT两个品种相当于发生基因突变,没有隔离,能杂交产生可育后代,因此是同一个种。18、(11年山东卷)(18分)荠菜的果实形成有三角形和卵圆形两种,形状的遗传设计两对等位基因,分别是A、a,B、b表示。为探究荠菜果实形状的遗传规律,进行了杂交实验(如图)。(1)途中亲本基因型为________________。根据F2表现型比例判断,荠菜果实形状的遗传遵循_____________。F1测交后代的表现型及比例为_______________________。另选两种基因型的亲本杂交,F1和F2的性状表现及比例与途中结果相同,推断亲本基因型为________________________。(2)图中F2三角形果实荠菜中,部分个体无论自交多少代,其后代表现型仍然为F2三角形果实荠菜中的比例三角形果实,这样的个体在为_____________;还有部分个体自交后发生性状分离,它们的基因型是________。(3)荠菜果实形成的相关基因a,b分别由基因A、B突变形成,基因A、B也可以突变成其他多种形式的等位基因,这体现了基因突变具有_______________的特点。自然选择可积累适应环境的突变,使种群的基因频率由(4)现有3包基因型分别为AABB、AaBB、和aaBB的荠菜种子,由于标签丢失而无法区分。根据请设计实验方案确定每包种子的基因型。有已知性状(三角形果和卯四形果实)的荠菜种子可供选用。实验步骤:①:②;③。结果预测:Ⅰ如果则包内种子基因型为AABB;Ⅱ如果则包内种子基因型为AaBB;Ⅲ 如果则包内种子基因型为aaBB。答案:(1)AABB和aabb自由组合三角形:卵圆形=3:1AAbb和aaBB(2)7/15AaBb、AaBb和aaBb(3)不定向性(或多方向性)定向改变(4)答案一①用3包种子长成的植株分别与卵圆形果实种子长成的植株杂交,得F1种子②F1种子长成的植株自交,得F2种子③F2种子长成植株后,按果实形状的表现型统计植株的比例ⅠF2三角形与卵圆形植株的比例约为15:1 ⅡF2三角形与卵圆形植株的比例约为27:5ⅢF2三角形与卵圆形植株的比例约为3:1答案二①用3包种子长成的植株分别与卵圆形果实种子长成的植株杂交,得F1种子②F1种子长成的植株分别与卵圆形果实种子长成的植株杂交,得F2种子③F2种子长成植株后,按果实形状的表现型统计植株的比例ⅠF2三角形与卵圆形植株的比例约为3:1ⅡF2三角形与卵圆形植株的比例约为5:3ⅢF2三角形与卵圆形植株的比例约为1:119、(2011年江苏卷)(8分)玉米非糯性基因(W)对糯性基因(w)是显性,黄胚乳基因(Y)对白胚乳基因(y)是显性,这两对等位基因分别位于第9号和第6号染色体上。W一和w一表示该基因所在染色体发生部分缺失(缺失区段不包括W和w基因),缺失不影响减数分裂过程。染色体缺失的花粉不育,而染色体缺失的雌配子可育。请回答下列问题:(1)现有基因型分别为WW、Ww、ww、WW一、W一w、ww一6种玉米植株,通过测交可验证“染色体缺失的花粉不育,而染色体缺失的雌配子可育”的结论,写出测交亲本组合的基因型:。(2)以基因型为Ww一个体作母本,基因型为W—w个体作父本,子代的表现型及其比例为。(3)基因型为Ww一Yy的个体产生可育雄配子的类型及其比例为。(4)现进行正、反交实验,正交:WwYy(♀)×W一wYy(♂),反交:W一wYy(♀)×WwYy(♂),则正交、反交后代的表现型及其比例分别为、。(5)以wwYY和WWyy为亲本杂交得到F1,F1自交产生F2。选取F2中的非糯性白胚乳植株,植株间相互传粉,则后代的表现型及其比例为。答案:(1)ww(♀)×W—w(♂);W—w(♀)×ww(♂)(2)非糯性:糯性=1:1(3)WY:Wy=1:1(5)非糯性白胚乳:糯性白胚乳=8:1(4)非糯性黄胚乳:非糯性白胚乳:糯性黄胚乳:糯性白胚乳=3:1:3:1非糯性黄胚乳:非糯性白胚乳:糯性黄胚乳:糯性白胚乳=9:3:3:1